**Finerenone and kidney** outcomes in patients with chronic kidney disease and type 2 diabetes: **Results from FIGARO-DKD** 

BAYE

George L. Bakris, MD University of Chicago Medicine

Date of preparation: November 2021



Approval number: MA-M\_FIN-ALL-0564-



## FIGARO-DKD was a randomised phase III trial of finerenone vs placebo in patients with early-stage CKD in T2D<sup>1</sup>



\*10 mg if screening eGFR <60 ml/min/1.73 m<sup>2</sup>; 20 mg if  $\geq$ 60 ml/min/1.73 m<sup>2</sup>, up-titration encouraged from month 1 if serum potassium  $\leq$ 4.8 mmol/L and eGFR stable; a decrease in the dose from 20 to 10 mg od was allowed any time after the initiation of finerenone or placebo; <sup>#</sup>mean sitting SBP  $\geq$ 170 mmHg or mean sitting DBP  $\geq$ 110 mmHg at the run-in visit, or mean sitting SBP  $\geq$ 160 mmHg or mean sitting DBP  $\geq$ 100 mmHg at the screening visit; <sup>‡</sup>known significant nondiabetic kidney disease, including clinically relevant renal artery stenosis

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; HbA1c, glycated haemoglobin; HFrEF, heart failure with reduced ejection fraction; [K<sup>+</sup>], potassium concentration; MI, myocardial infarction; NYHA, New York Heart Association; od, once daily; R, randomisation; SBP, systolic blood pressure

2 1. Pitt B, et al. N Engl J Med 2021; doi: 10.1056/NEJMoa2110956; 2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Kidney Int 2013;3:1–150



## The FIGARO-DKD trial demonstrated CV benefits with finerenone in patients with CKD and T2D<sup>1</sup>

**Finerenone** is a **novel**, **nonsteroidal**, **selective MRA** that **inhibits MR overactivation in preclinical models**<sup>2</sup>



#### In FIGARO-DKD, finerenone:<sup>1</sup>

Significantly reduced the risk of CV morbidity and mortality by 13% (NNT=47\*), predominantly driven by a 29% reduction in HHF risk

This analysis examines additional renal outcomes in FIGARO-DKD, and cardiorenal outcomes by baseline UACR, because the trial enrolled patients with both moderately and severely increased albuminuria

\*NNT to prevent one event based on absolute risk reductions at 3.5 years

CKD, chronic kidney disease; CV, cardiovascular disease; HHF, hospitalisation for heart failure; MR, mineralocorticoid receptor; MRA, mineralocorticoid receptor antagonist;

NNT, number needed to treat; T2D, type 2 diabetes; UACR, urine albumin-to-creatinine ratio

3 1. Pitt B, et al. N Engl J Med 2021; doi: 10.1056/NEJMoa2110956; 2. Agarwal R, et al. Eur Heart J 2021;42:152–161



## At baseline, 62% of patients had CKD with an eGFR ≥60 ml/min/1.73 m<sup>2</sup>



eGFR (ml/min/1.73 m<sup>2</sup>)



UACR (mg/g)



In the overall population, finerenone reduced UACR by month 4 and increased the incidence of albuminuria regression vs placebo

#### UACR change from baseline<sup>1</sup>



SD, standard deviation

5 1. Bakris G, et al. ASN 2021; Abstract SA-OR21; 2. Pitt B, et al. N Engl J Med 2021; doi: 10.1056/NEJMoa2110956



### **Finerenone on kidney outcomes**





### ESKD occurred in 0.9% vs 1.3% of finerenone vs placebo recipients (HR=0.64; 95% CI 0.41–0.995; *p*=0.046¶)

\*ESKD or an eGFR <15 ml/min/1.73 m<sup>2</sup>; <sup>#</sup>events were classified as renal death if: (1) the patient died; (2) kidney replacement therapy had not been initiated despite being clinically indicated; and

(3) there was no other likely cause of death; ‡number of patients with an event over a median of 3.4 years of follow-up; § ≥57% eGFR decline is equivalent to doubling of serum creatinine; ¶p-value is exploratory

CI, confidence interval; ESKD, end-stage kidney disease; HR, hazard ratio

1. Pitt B, et al. N Engl J Med 2021; doi: 10.1056/NEJMoa2110956; 2. Pitt B, presented at the ESC Congress 2021 Hot Line session 28 August 2021.

https://esc365.escardio.org/presentation/238814

### FIGARO-DKD

## The effect of finerenone on the composite kidney outcomes was reflected by a reduction in the risk of ESKD by 36% vs placebo

|                                                                              | Finerenone<br>(n=3686) | Placebo<br>(n=3666) |                 | HR (95% CI)        |
|------------------------------------------------------------------------------|------------------------|---------------------|-----------------|--------------------|
| ≥40% secondary kidney<br>outcome                                             | 350 (9.5)              | 395 (10.8)          | F <b>\$</b> -1  | 0.87 (0.76–1.01)   |
| Kidney failure*                                                              | 46 (1.2)               | 62 (1.7)            | F               | 0.72 (0.49–1.05)   |
| ESKD                                                                         | 32 (0.9)               | 49 (1.3)            | <b>└──◆</b> ─── | 0.64 (0.41–0.995)  |
| Sustained <sup>#</sup> decrease in<br>eGFR to <15 ml/min/1.73 m <sup>2</sup> | 28 (0.8)               | 38 (1.0)            | • <b>•</b> •    | - 0.71 (0.43–1.16) |
| Sustained <sup>#</sup> ≥40% decrease in<br>eGFR from baseline                | 338 (9.2)              | 385 (10.5)          | <b>⊢</b> ◆-1    | 0.87 (0.75–1.00)   |
| Renal death                                                                  | 0                      | 2 (<0.1)            |                 | 0.87 (0.76–1.01)   |
| ≥57% secondary kidney<br>composite <sup>‡</sup>                              | 108 (2.9)              | 139 (3.8)           |                 | 0.77 (0.60–0.99)   |
| ≥57% <b>↓</b> in eGFR                                                        | 90 (2.4)               | 116 (3.2)           | F               | 0.76 (0.58–1.00)   |
|                                                                              |                        | 0,25 1              |                 | 4                  |
|                                                                              |                        | Fa                  | vors finerenone | Favors placebo     |

\*Kidney failure defined as either ESKD (initiation of chronic dialysis for ≥90 days or kidney transplant) or sustained decrease in eGFR <15 ml/min/1.73 m<sup>2</sup>; #confirmed by two eGFR measurements ≥4 weeks apart; ‡composite of kidney failure, sustained ≥57% decrease in eGFR from baseline, or renal death



7 Pitt B, et al. N Engl J Med 2021; doi: 10.1056/NEJMoa2110956

### More AEs were reported in patients with moderately increased albuminuria; however, this group had lower eGFR by trial design

| Treatment-emergent AE, n (%)            | Moderately increased albuminuria<br>(30–<300 mg/g)<br>Mean baseline eGFR<br>56 (IQR 42–67) ml/min/1.73 m <sup>2</sup> |                     | Severely increased albuminuria<br>(≥300 mg/g)<br>Mean baseline eGFR<br>80 (IQR 68–92) ml/min/1.73 m <sup>2</sup> |                     |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|---------------------|
|                                         | Finerenone<br>(n=1724)                                                                                                | Placebo<br>(n=1682) | Finerenone<br>(n=1850)                                                                                           | Placebo<br>(n=1877) |
| Any AE                                  | 1507 (87.4)                                                                                                           | 1483 (88.2)         | 1532 (82.8)                                                                                                      | 1562 (83.2)         |
| AE related to study drug                | 327 (19.0)                                                                                                            | 241 (14.3)          | 210 (11.4)                                                                                                       | 161 (8.6)           |
| AE leading to treatment discontinuation | 133 (7.7)                                                                                                             | 104 (6.2)           | 69 (3.7)                                                                                                         | 72 (3.8)            |
| Any serious AE                          | 607 (35.2)                                                                                                            | 616 (36.6)          | 516 (27.9)                                                                                                       | 571 (30.4)          |
| Any hyperkalaemia AE                    | 234 (13.6)                                                                                                            | 108 (6.4)           | 148 (8.0)                                                                                                        | 83 (4.4)            |
| Hyperkalaemia                           |                                                                                                                       |                     |                                                                                                                  |                     |
| Related to study drug                   | 142 (8.2)                                                                                                             | 64 (3.8)            | 89 (4.8)                                                                                                         | 48 (2.6)            |
| Leading to hospitalisation              | 14 (0.8)                                                                                                              | 2 (0.1)             | 6 (0.3)                                                                                                          | 0                   |
| Leading to permanent discontinuation    | 32 (1.9)                                                                                                              | 9 (0.5)             | 12 (0.6)                                                                                                         | 4 (0.2)             |

AE, adverse event; IQR, interquartile range

8 Bakris G, et al. ASN 2021; Abstract SA-OR21



### **Summary and conclusions**

In patients with CKD stage 1–4 with moderate-to-severely elevated albuminuria (UACR ≥30 mg/g), well-controlled SBP and HbA1c, and treated with optimised RAS blockade, finerenone:

- Showed a trend towards a risk reduction for the ≥40% and ≥57% eGFR kidney composite outcomes
  - Kidney benefits were reflected in a 36% relative risk reduction in ESKD

Significantly reduced the risk of CV morbidity and mortality by 13%

 Results were consistent in patients with moderately increased and severely













# Thank you



### 48 countries, 19,381 patients enrolled, 7437 patients randomised

**Executive committee** 

George L. Bakris; Gerasimos Filippatos; Rajiv Agarwal; Stefan D. Anker; Luis M. Ruilope; Bertram Pitt

Independent data monitoring committee

Murray Epstein; Aldo Maggioni; Glenn Chertow; Gerald DiBona; Tim Friede; Jose Lopez-Sendon; Jean Rouleau

#### **Clinical event committee**

Rajiv Agarwal; Stefan Anker; Phyllis August; Andrew Coats; Hans Diener; Wolfram Döhner; Barry Greenberg; Stephan von Haehling; James Januzzi; Alan Jardine; Carlos Kase; Sankar Navaneethan; Lauren Phillips; Piotr Ponikowski; Pantelis Sarafidis; Titte Srinivas; Turgut Tatlisumak; John Teerlink

#### National lead investigators

Augusto Vallejos; Richard MacIsaac; Guntram Schernthaner; Pieter Gillard; Maria Eugenia F. Canziani; Theodora Temelkova-Kurktschiev; Ellen Burgess and Sheldon Tobe; Fernando González; Zhi-Hong Liu; Andrés Ángelo Cadena Bonfanti and Carlos Francisco Jaramillo; Martin Prazny; Peter Rossing; Jorma Strand; Michel Marre; Roland Schmieder and Christoph Wanner; Pantelis A. Sarafidis; Juliana Chan; László Rosivall; Joseph Eustace; Ehud Grossman and Yoram Yagil; Giuseppe Remuzzi; Daisuke Koya and Takashi Wada; Luis Alejandro Nevarez Ruiz; Ron Gansevoort and Adriaan Kooy; Trine Finnes; Froilan De Leon; Janusz Gumprecht; Fernando Teixeira e Costa; Alexander Dreval; Anantharaman Vathsala; Aslam Amod; Sin Gon Kim and Byung Wan Lee; Julio Pascual Santos; Bengt-Olov Tengmark; Michel Burnier; Chien-Te Lee; Sukit Yamwong; Ramazan Sari; Kieran McCafferty; Borys Mankovsky; Sharon Adler, Linda Fried, Robert Toto and Mark Williams; Tran Quang Khanh



The FIGARO-DKD team would also like to thank all participating investigators, the centres, and the patients and their families

