

Outcomes with finerenone in patients with stage 4 CKD and T2D: A FIDELITY subgroup analysis

Pantelis Sarafidis, MD; Rajiv Agarwal, MD; Bertram Pitt, MD; Christoph Wanner, MD; Gerasimos Filippatos, MD; John Boletis, MD; Katherine R. Tuttle, MD; Luis M. Ruilope, MD; Peter Rossing, MD; Robert Toto, MD; Stefan D. Anker, MD; Zhi-Hong Liu, MD; Amer Joseph, MBBS; Christiane Ahlers, Dipl; Meike Brinker, MD; Robert Lawatscheck, MD; and George Bakris, MD, on behalf of the FIDELIO-DKD and FIGARO-DKD Investigators

<u>Disclosures for PS</u>: Advisor to AstraZeneca, Elpen, Genesis Pharma, Innovis Pharma, Menarini and Win Medica; speaker for Amgen, Bayer, Boehringer Ingelheim, Genesis, Menarini and Win Medica; received research support from AstraZeneca, Boehringer Ingelheim and Elpen; member of steering committees and endpoint adjudication committees for Bayer trials; Associate Editor for the Journal of Human Hypertension and Theme Editor for Nephrology Dialysis and Transplantation

PARIS & VIRTUA MAY 19-72, 2022

Subanalysis compared the efficacy and safety of finerenone versus placebo in patients with stage 4 CKD and T2D

A prespecified, individual patient-level pooled efficacy and safety analysis of:

FIDELITY*

FIDELIO-DKD and FIGARO-DKD

Phase III trials of patients with CKD and T2D, randomised 1:1 to receive finerenone or placebo

Key endpoints: CV composite:

Time to CV death, non-fatal MI, non-fatal stroke or HHF

- Kidney composite: Time to kidney failure, a sustained \geq 57% decrease in eGFR from baseline over ≥ 4 weeks, or renal death Secondary endpoints:
 - Change in eGFR
 - Change in UACR

	Total study population N=13,026				
	Stage 4 CKD (n=890)	Stage 1–3 CKD (n=12,133)			
Age, years	67	65			
Male, %	64	70			
HbA1c, %	7.6	7.7			
SBP/DBP, mmHg	136/73	137/77			
History of CV disease, %	50	45			
eGFR, [‡] ml/min/1.73 m ²	27	60			
UACR, mg/g, median	720	503			
Medication use, %					
ACEi	32.5	39.5			
ARB	67.3	60.5			
Insulin and analogues	69	57.8			
SGLT-2i	2	7			
GLP-1RA	6	7			

*Median follow-up of 3.0 years; #Data are mean unless otherwise indicated; ‡analysis of 13,026 patients (data were missing in 3 patients (<0.1%) ACEi, angiotensin-converting enyme inhibitor; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; CV, cardiovascular; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; GLP-1RA, glucagon-like peptide-1 receptor agonist; HbA1c, glycated haemoglobin; HHF, hospitalisation for heart failure; MI, myocardial infarction; SBP, systolic blood pressure; SGLT-2i, sodium-glucose co-transporter-2 inhibitor; T2D, type 2 diabetes; UACR, urine albumin-to-creatinine ratio

Cardiovascular outcomes in eGFR subgroups

Results indicate a benefit of finerenone vs placebo in stage 4 and stage 1–3 CKD*#

*pinteraction between stage 1–3 versus stage 4 CKD = 0.67; # HR 95% CI is below 1 for stage 1-3 CKD and overlaps 1 for stage 4 CKD, however the sample size is low for stage 4 CKD; #The no. of patients for months 42 and 48 since randomisation is smaller than the previous months

CI, confidence interval; CKD, chronic kidney disease; CV, cardiovascular; eGFR, estimated glomerular filtration rate; FIN, finerenone; HR, hazard ratio; PBO, placebo; T2D, type 2 diabetes

SERA

Kidney outcomes in eGFR subgroups

The HR for the risk of a sustained ≥57% decrease in eGFR component[#] was 0.69 (95% CI 0.43–1.11) in patients with stage 4 CKD and 0.70 (95% CI 0.59–0.83) in patients with stage 1–3 CKD

*Calculated when the proportional hazard assumption was not met (based on robust proportional hazard estimators with conditionally independent censoring on treatment groups); #Component of the kidney composite endpoint; [‡]The no. of patients for months 42 and 48 since randomisation is smaller than the previous months CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FIN, finerenone; HR, hazard ratio; PBO, placebo; T2D, type 2 diabetes

CERA

Finerenone slowed eGFR decline and resulted in a 31% reduction in UACR by month 4 compared with placebo in patients with stage 4 CKD

*Total slope assessed as annualised LS mean change in eGFR from baseline to permanent discontinuation or end-of-study visit based on ANCOVA model; #Chronic slope assessed as annualised LS mean change in eGFR from month 4 to permanent discontinuation or end-of-study visit based on ANCOVA model; ANCOVA, analysis of covariance; CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FIN, finerenone; LS, least-squares; NS, not significant; PBO, placebo; UACR, urine albumin-to-creatinine ratio

Safety outcomes and summary

Safety

0/	Stage 4		Stage 1–3	
70	FIN	PBO	FIN	PBO
Any TEAE	90	91	86	86
Led to discontinuation	10	9	6	5
Any serious TEAE	34	42	32	33
Renal/urinary disorders*	20	23	15	17
AKI	6	7	3	3
Hyperkalaemia [#]	26	13	13	7
Led to discontinuation	3	2	2	1
Led to hospitalisation	3	1	1	<1

CV effects of finerenone vs placebo are consistent with results in patients with stage 1–3 CKD

Conclusions

Finerenone consistently reduced the risk of sustained ≥57% eGFR decline and showed improvements in eGFR slope and UACR vs placebo in patients with stage 4 CKD

The safety profile of finerenone in patients with stage 4 CKD was generally consistent with that in patients who had stage 1-3 CKD and T2D at baseline

*Including AKI, azotaemia, CKD, ESKD, haematuria, nephropathy toxic, nocturia, pollakiuria, renal artery stenosis, renal cyst, renal failure, renal impairment, urinary hesitation, urinary incompetence, urinary retention; "Defined as serum [K+] ≥5.5 mmol/l, and investigator-reported using the terms 'hyperkalaemia' and 'blood potassium increased' AKI, acute kidney injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FIN, finerenone; PBO, placebo; TEAE, treatment-emergent adverse event; T2D, type 2 diabetes; UACR, urine albumin-to-creatinine ratio

 59° HRA

PARIS & VIRTUAL MAY 19-22, 2022

(()))(-1-