

in collaboration with

Österreichische Gesellschaft für Nephrologie

Effect of finerenone on eGFR slope across different levels of baseline albuminuria and eGFR: Insights from FINEARTS-HF

<u>Finnian R. Mc Causland</u>^{1*}; Hiddo J. L. Heerspink^{2*}; Muthiah Vaduganathan¹; Brian L. Claggett¹; Akshay S. Desai¹; Pardeep S. Jhund³; Martina M. McGrath¹; Katja Rohwedder⁴; Flaviana Amarante⁴; Meike Brinker⁴; Patrick Schloemer⁴; Carolyn SP Lam⁵; Michele Senni⁶; Sanjiv J. Shah⁷; Adriaan A. Voors⁸; Faiez Zannad⁹; Bertram Pitt¹⁰; John JV McMurray³; Scott D. Solomon¹

¹Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States; ²Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; ³University of Glasgow, Glasgow, Scotland, United Kingdom; ⁴Bayer, Germany/US; ⁵National Heart Centre Singapore & Duke-National University of Singapore, Singapore; ⁶University of Milano-Bicocca ASST Papa Giovanni XXIII Hospital, Bergamo, Italy; ⁷Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States; ⁸University of Groningen, Groningen, Netherlands; ⁹University of Lorraine, Nancy, France; ¹⁰University of Michigan, Ann Arbor, Michigan, United States

Background

- Finerenone reduces the risk of kidney disease progression and slows the decline in eGFR among patients with type 2 diabetes (T2DM), chronic kidney disease (CKD), and albuminuria.
- Finerenone did not modify the risk of kidney outcomes or eGFR decline among patients with heart failure (HF) in the FINEARTS-HF trial, who were generally at low risk for kidney disease progression.
- Whether the effect of finerenone on eGFR slope among patients with HF differs according to baseline urine albumin:creatinine ratio (UACR) or eGFR is not clear.

FINEARTS-HF Study Design

Randomized, double-blind, placebo-controlled trial of patients with HFmrEF/HFpEF

Key Inclusion Criteria

- Symptomatic HF with LVEF ≥ 40%
- Age ≥40 yrs
- Elevated natriuretic peptide levels
- Structural heart disease (LA↑ or LVH)
- Diuretics in the 30d prior to randomization

Key Exclusion Criteria

- eGFR <25 mL/min/1.73 m²
- Potassium >5.0 mmol/L
- Symptomatic hypotension
- MRA use 30d prior to randomization

Finerenone 10, 20 or 20, 40 mg

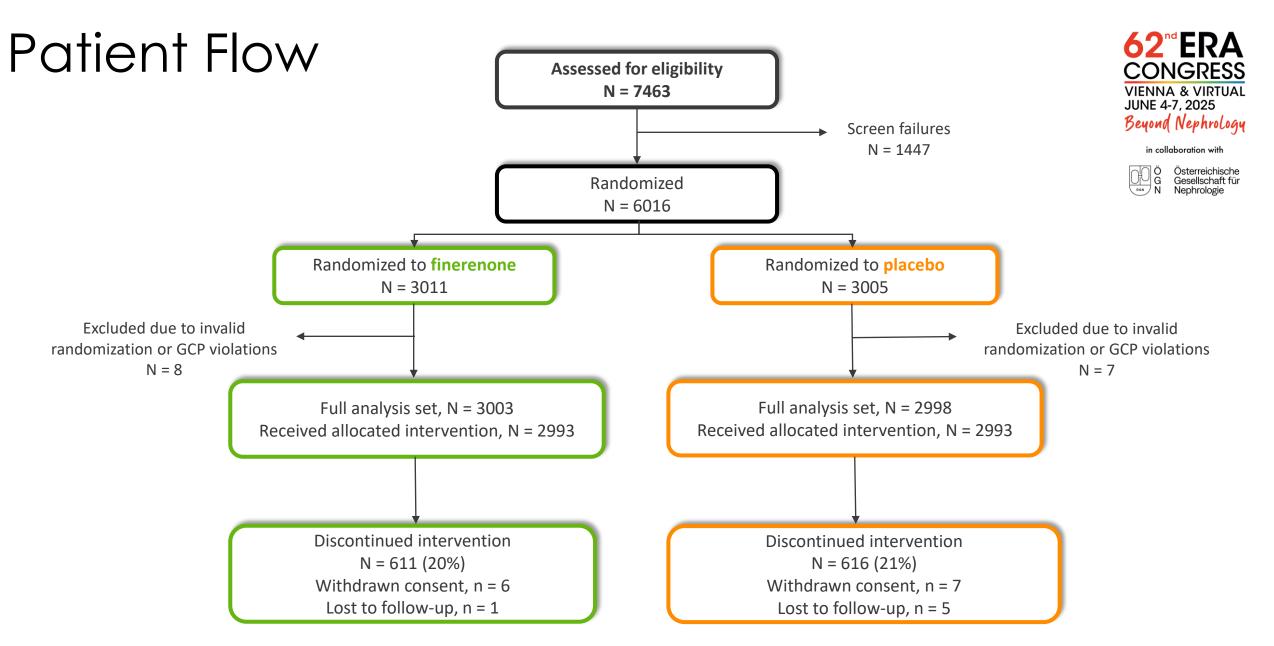
dosing based on eGFR: ≤60 max dose 20 mg, >60, max dose 40 mg

N = 6,001 validly randomized

Uptitrate to maximally tolerated dose if K+<5.0mmol/L and eGFR decrease <30%

1:1

Randomization


Matching Placebo

Visits: Month 1, then 3-monthly for first 12 months, 4-monthly visits thereafter

UACR and eGFR measurements

in collaboration with

Exposures – UACR and eGFR

- UACR was measured from spot urine collections at baseline in 5,797 participants.
 - Categories: <30 mg/g, 30 to <300 mg/g, and ≥300 mg/g.
- eGFR was calculated using the CKD-EPI 2009 equation
 - Categories: <45, 45 to <60, and ≥60 mL/min/1.73 m².

Outcome – eGFR slope

- The changes in eGFR from baseline (prespecified exploratory endpoint)
 - Total slope [baseline to end of study]
 - Acute slope [baseline to 3 months]
 - Chronic slope [3 months to end of study]

Analytic Approach

62nd ERA
CONGRESS
VIENNA & VIRTUAL
JUNE 4-7, 2025
Beyond Nephrology

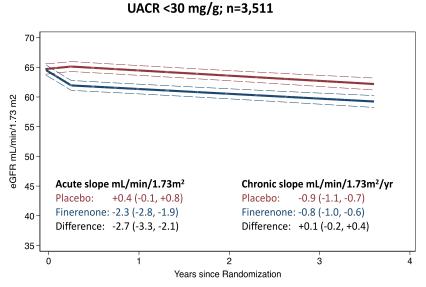
- Changes in eGFR (continuous) over time were assessed with repeated measures mixed-effect models, using available data from central laboratory measurements.
- Models were adjusted for treatment assignment, trial visit, geographic region, left ventricular ejection fraction (<60 or ≥60%), the interaction between treatment assignment and visit.
- Intercepts and slopes over time were allowed to vary randomly between patients via the inclusion of patient and time as random effects.
- A two-slope model with a specified change-point at Month 3 was used to estimate the acute slope (Month 0 to Month 3) and the chronic slope (Month 3 to end of study), with the total slope calculated at year 3 as a linear combination of the acute and chronic slope estimates.
- Interaction terms were introduced to explore for differential treatment effects on eGFR slope according to categories of baseline UACR and categories of baseline eGFR.

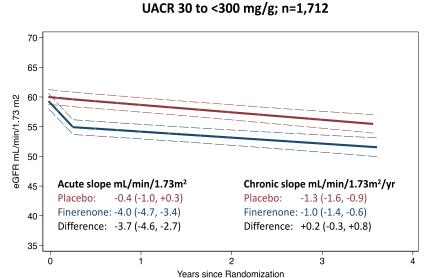
Baseline Characteristics

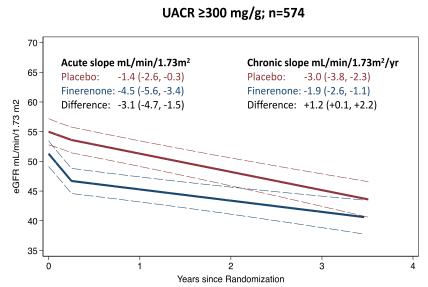
62nd ERA CONGRESS VIENNA & VIRTUAL JUNE 4-7, 2025 Beyond Nephrology

Categories of UACR

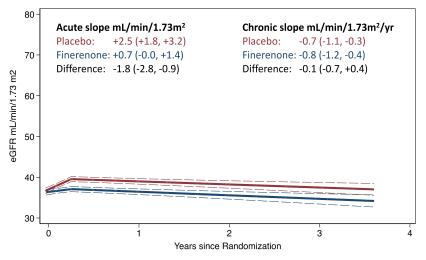
	O		
	UACR <30 mg/g	UACR 30 - <300 mg/g	UACR ≥300 mg/g
	n=3511	n=1712	n=574
Age, years	71 ± 10	73 ± 9	70 ± 10
Female, n(%)	1625 (46.3%)	785 (45.9%)	220 (38.3%)
SBP, mmHg	128 ± 15	131 ± 15	136 ± 16
eGFR, mL/min/1.73 m2	65 ± 19	60 ± 20	54 ± 20
UACR, mg/g	8 [4, 15]	69 [43, 126]	728 [434, 1463]
LVEF, (%)	53 ±8	53 ±8	52 ± 8
NT-proBNP, pg/mL	817 [371, 1529]	1416 [650, 2522]	1661 [758, 3045]
Hx. of Diabetes, n(%)	1133 (32.3%)	826 (48.2%)	396 (69.0%)
ACE inhibitor, n(%)	1342 (38.2%)	552 (32.2%)	181 (31.5%)
ARB, n(%)	1199 (34.1%)	634 (37.0%)	215 (37.5%)
ARNI, n(%)	276 (7.9 %)	169 (9.9 %)	55 (9.6 %)
SGLT2 inhibitor, n(%)	382 (10.9%)	289 (16.9%)	117 (20.4%)
Loop diuretic, n(%)	2988 (85.1%)	1529 (89.3%)	534 (93.0%)
Thiazide, n(%)	511 (14.6%)	225 (13.1%)	75 (13.1%)
Randomized to finerenone, n(%)	1765 (50.3%)	844 (49.3%)	292 (50.9%)

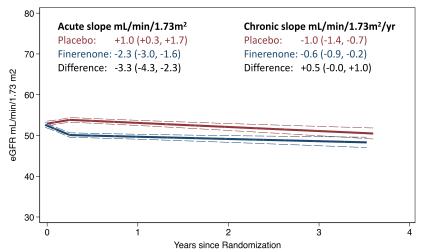

Categories of eGFR

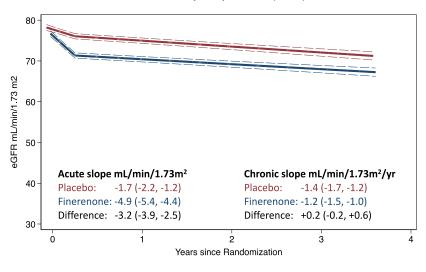

	-CED > CO	-CED 45 400	-CED 445
	eGFR ≥60	eGFR 45-<60	eGFR <45
	mL/min/1.73 m ²	mL/min/1.73 m ²	mL/min/1.73 m ²
	n=3012	n=1520	n=1265
Age, years	68 ± 10	74 ± 8	77 ±8
Female, n(%)	1238 (41.1%)	753 (49.5%)	639 (50.5%)
SBP, mmHg	130 ± 15	129 ± 16	129 ± 16
eGFR, mL/min/1.73 m2	78 ± 12	53 ± 4	36 ± 6
UACR, mg/g	14 [6, 45]	20 [8, 76]	33 [11, 160]
LVEF, (%)	52 ± 8	53 ± 8	53 ± 8
NT-proBNP, pg/mL	798 [356, 1497]	1183 [534, 2098]	1593 [770, 2972]
Hx. of Diabetes, n(%)	1099 (36.5%)	625 (41.1%)	631 (49.9%)
ACE inhibitor, n(%)	1182 (39.2%)	516 (33.9%)	377 (29.8%)
ARB, n(%)	996 (33.1%)	593 (39.0%)	459 (36.3%)
ARNI, n(%)	291 (9.7 %)	114 (7.5 %)	95 (7.5 %)
SGLT2 inhibitor, n(%)	360 (12.0%)	213 (14.0%)	215 (17.0%)
Loop diuretic, n(%)	2565 (85.2%)	1315 (86.5%)	1171 (92.6%)
Thiazide, n(%)	445 (14.8%)	234 (15.4%)	132 (10.4%)
Randomized to	1503 (49.9%)	777 (51.1%)	621 (49.1%)
finerenone, n(%)			



Results: Categories of UACR


P-interaction=0.09


Results: Categories of eGFR


eGFR <45 mL/min/1.73 m²; n=1,332

eGFR 45 to <60 mL/min/1.73 m²; n=1,556

eGFR ≥60 mL/min/1.73 m²; n=3,113

P-interaction=0.48

Conclusions

- Finerenone appears to slow eGFR decline relative to placebo to a clinically meaningful degree among patients with higher baseline UACR
- There was no suggestion of heterogeneity according to categories of baseline eGFR
- Overall, consistent with data from FIDELITY, the present data support the current practice for including higher UACR (over lower eGFR) as an enrichment criterion for trials examining treatment effects on eGFR slope

Acknowledgements

Steering Committee

Scott D. Solomon, MD & John J.V. McMurray, MD, Co-Chairs

Carolyn S.P. Lam, MD, Bertram Pitt, MD, Michele Senni, MD, Sanjiv Shah, MD,
Adriaan Voors, MD, Faiez Zannad, MD

Sponsor Leadership

Bayer

Prabhakar Viswanathan, MD, Ilse van Gameren, Flaviana Amarante, MD, James Lay-Flurrie, MSc Catherine Salt, Michelle King, Maria Borentain, MD

Clinical Events Committee

Akshay Desai, MD, Pardeep Jhund, MD (Chairs)

Data Safety Monitoring Committee

Aldo Maggioni, MD, Murray Epstein, MD (Chairs)

Independent Statistical Team

Brian Claggett, PhD, Muthiah Vaduganathan, MD, Pardeep Jhund, MD, Alasdair Henderson, PhD

National Lead Investigators

Argentina	Felipe Martinez	
Australia	John Atherton	
Austria	Dirk von Lewinski	
Brazil	Jose Francisco Kerr Saraiva	
Bulgaria	Tzvetana Katova	
Canada	Shelley Zieroth	
Canada	Jay Udell	
Canada	Subodh Verma	
China	Ma chang-sheng	
Colombia	Clara Inés Saldarriaga	
Czech Rep	Vojtěch Melenovský	
Denmark	Morten Schou	
Finland	Heikki Ukkonen	
Germany	Johann Bauersachs	
Greece	Gerasimos Filippatos	
Hungary	Bela Merkely	
Hong Kong	Alex Lee	
India	Vijay Chopra	
Israel	Sorel Goland	
Italy	Savina Nodari	
Israel	Sorel Goland	

	Japan	Naoki Sato	
	Latvia	Gustavs Latkovskis	
	Malaysia	Imran Zainal Abidin	
	Mexico	Marco Alcocer-Gamba	
]	Mexico	Guillermo Llamas Esperón	
	Netherlands	ds Gerard Linssen	
	New Zealand	Richard Troughton	
	Poland	Grzegorz Gajos	
	Portugal	Cândida Fonseca	
]	Romania	Ovidiu Chioncel	
]	Russia	Vyacheslav Mareev	
	Slovakia	Eva Goncalvesova	
]	South-Korea	Seokmin Kang	
]	Spain	Josep Comin Colet	
]	Taiwan	Chern-En Chiang	
]	Turkey	Mehmet Birhan Yılmaz	
	UK	Mark Petrie	
]	Ukraine	Leonid Voronkov	
]	USA	Orly Vardeny	
	USA	Kavita Sharma	
	USA	Mikhail Kosiborod	

62nd ERA
CONGRESS
VIENNA & VIRTUAL
JUNE 4-7, 2025
Beyond Nephrology

in collaboration with

Österreichische Gesellschaft für Nephrologie

We thank all the FINEARTS-HF Investigators and participants!

