SO 080-892 Efficacy and safety of finerenone in patients with CKD and T2D across the frailty spectrum: A FIDELITY post hoc analysis

Gerasimos Filippatos, MD¹⁴; on behalf of the FIDELIO-DKD and FIGARO-DKD Investigators

¹Steno Diabetes Center Copenhagen, Bermany; ³Department of Clinical Medicine, University of Copenhagen, Copenhagen, Copenhagen, Copenhagen, Copenhagen, Copenhagen, Bermany; ³Department of Clinical Medicine, University of Copenhagen, Copenha ⁶Department of Medicine, University of Padua, Italy; ⁷Washington University, Wrocław, Polance (BCRT), German Centre for Regenerative Therapies (BCRT), German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Heart Center Charité, University, Wrocław, Polance (BCRT), German Centre for Regenerative Therapies (BCRT), German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Regenerative Therapies (BCRT), German Centre for Regenerative Therapies (BCRT), German Centre for Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Heart Center for Regenerative Therapies (BCRT), German Heart Center for Regenerative Therapies (BCRT), German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Heart Center for Regenerative Therapies (BCRT), German Centre for Regenerative Therapies (BCRT), German Centre for Regenerative Therapies (BCRT), German Heart Center for R ¹⁰Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA; ¹¹Medica Affairs, Bayer AG, Berlin, Germany; ¹²Global Development, Bayer AG, Berlin, Germany; ¹⁴National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece

Introduction

- Frailty is often defined as a state of increased vulnerability associated with a decline in physiological system function and is associated with increased risk of adverse outcomes¹⁻⁴
- Given the accumulation of risk factors and comorbidities in people with more severe frailty, inappropriate prescribing is prevalent in older people with frailty⁵
- An estimated 7–20% of adults with chronic kidney disease (CKD) are considered to have frailty, and this has been associated with a lower quality of life, an increased rate of disease progression, and an increased risk of death⁶⁻⁸
- Finerenone, a selective nonsteroidal mineralocorticoid receptor antagonist, reduced the risk of adverse cardiovascular (CV) and kidney outcomes vs placebo in FIDELITY, a prespecified pooled analysis of the phase III FIDELIO-DKD and FIGARO-DKD trials⁹⁻¹¹

Aim

• This FIDELITY post hoc analysis explored the efficacy and safety of finerenone in patients with CKD and type 2 diabetes (T2D) according to baseline frailty index score

Methods

- Full eligibility criteria are outlined in the FIDELIO-DKD and FIGARO-DKD primary analyses^{10,11}, and included those who:
- Were aged ≥18 years with CKD and T2D
- Had a serum potassium level ≤4.8 mmol/l at screening
- Had either a urine albumin-to-creatinine ratio (UACR) ≥30 to <300 mg/g and an estimated glomerular filtration rate (eGFR) ≥25 to ≤90 ml/min/1.73 m², or UACR ≥300 to ≤5000 mg/g and eGFR ≥25 ml/min/1.73 m²
- Were treated with standard-of-care therapy, including a maximum tolerated labelled dose of a renin-angiotensin system inhibitor • Patients were randomly assigned to receive finerenone at titrated doses of 10 or 20 mg once daily as oral treatment or matching placebo (1:1)
- Frailty was defined using the Rockwood cumulative deficit approach
- 30 baseline clinical characteristics, including laboratory measures, quality of life measures and medical history, were used to construct the frailty index and assign a normalised frailty index score between 0 (no frailty) and 1 (maximal frailty) to each patient – All enrolled participants were categorised into subgroups based on frailty index quartiles (≤Q1, >Q1 to ≤Q2, >Q2 to ≤Q3, and >Q3)
- Efficacy outcomes included a CV composite outcome (CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalisation for heart failure) and a kidney composite outcome (kidney failure, sustained ≥57% eGFR decline from baseline, or kidney-related death)
- Changes in eGFR compared with baseline values were measured at multiple visits across the study period

Results

• A total of 12,990 people were included in this analysis; the mean frailty index was 0.463 (standard deviation 0.105) and participants in both treatment arms were equally distributed across the frailty spectrum (**Table 1**)

Table 1. Baseline characteristics of enrolled participants stratified by baseline frailty index

				······································	· •·····			
	≤Q1 (least frail)		>Q1 to ≤Q2		>Q2 to ≤Q3		>Q3 (most frail)	
Baseline	Finerenone	Placebo	Finerenone	Placebo	Finerenone	Placebo	Finerenone	Placebo
characteristic	(<i>n</i> = 1619)	(<i>n</i> = 1691)	(<i>n</i> = 1643)	(<i>n</i> = 1549)	(<i>n</i> = 1685)	(<i>n</i> = 1661)	(<i>n</i> = 1551)	(<i>n</i> = 1591)
Sex, n (%)								
Female	467	413	480	422	523	504	565	558
	(28.8)	(24.4)	(29.2)	(27.2)	(31.0)	(30.3)	(36.4)	(35.1)
Male	1152	1278	1163	1127	1162	1157	986	1033
	(71.2)	(75.6)	(70.8)	(72.8)	(69.0)	(69.7)	(63.6)	(64.9)
Age, years, mean (SD)	61.0	61.4	64.5	64.3	66.2	66.1	67.3	67.7
	(9.4)	(10.1)	(9.3)	(9.6)	(9.0)	(9.2)	(8.5)	(8.6)
Race, n (%)								
Asian	591	627	424	396	286	287	112	137
	(36.5)	(37.1)	(25.8)	(25.6)	(17.0)	(17.3)	(7.2)	(8.6)
Black or African American	42	46	55	47	72	81	82	95
	(2.6)	(2.7)	(3.3)	(3.0)	(4.3)	(4.9)	(5.3)	(6.0)
White	880	919	1063	1000	1229	1212	1277	1289
	(54.4)	(54.3)	(64.7)	(64.6)	(72.9)	(73.0)	(82.3)	(81.0)
BMI, kg/m², mean (SD)	29.2	29.2	30.8	30.8	31.6	31.7	33.8	33.5
	(5.5)	(5.5)	(5.8)	(5.6)	(5.8)	(5.7)	(6.2)	(6.2)
Current smoker, n (%)	370	365	284	268	235	216	170	174
	(22.9)	(21.6)	(17.3)	(17.3)	(13.9)	(13.0)	(11.0)	(10.9)
UACR, mg/g, median (IQR)	450	431	497	512	490	517	642	647
	(178–943)	(161–926)	(185–1168)	(208–1147)	(194–1099)	(196–1223)	(247–1380)	(254–1426)
eGFR, ml/min/1.73 m ² ,	67.5	67.4	58.9	60.3	55.2	54.1	48.1	48.4
mean (SD)	(21.4)	(21.8)	(21.4)	(21.8)	(20.5)	(20.4)	(18.4)	(18.1)
Serum potassium, mmol/l,	4.28	4.28	4.33	4.32	4.35	4.37	4.43	4.43
mean (SD)	(0.39)	(0.38)	(0.42)	(0.43)	(0.45)	(0.45)	(0.49)	(0.49)
Systolic blood pressure,	131.8	131.5	134.9	136.0	138.2	138.0	142.4	141.7
mmHg, mean (SD)	(12.7)	(13.0)	(13.4)	(13.6)	(14.2)	(14.3)	(14.2)	(14.2)
HbA1c, %, mean (SD)	7.22	7.21	7.60	7.53	7.83	7.85	8.20	8.17
	(1.22)	(1.24)	(1.38)	(1.34)	(1.35)	(1.34)	(1.31)	(1.31)
Duration of diabetes, years, mean (SD)	12.6	12.9	15.0	14.4	16.4	16.4	17.8	17.9
	(7.6)	(8.0)	(8.5)	(8.1)	(8.9)	(9.1)	(9.1)	(8.6)
History of CV disease, n (%)	361	326	648	593	935	911	1029	1125
	(22.3)	(19.3)	(39.4)	(38.3)	(55.5)	(54.8)	(66.3)	(70.7)
History of hypertension, n (%)	1506	1574	1587	1511	1648	1621	1519	1565
	(93.0)	(93.1)	(96.6)	(97.5)	(97.8)	(97.6)	(97.9)	(98.4)
History of MI, n (%)	96	88	217	192	299	316	404	408
	(5.9)	(5.2)	(13.2)	(12.4)	(17.7)	(19.0)	(26.0)	(25.6)
History of atrial fibrillation and atrial flutter, n (%)	48	48	121	103	179	168	218	219
	(3.0)	(2.8)	(7.4)	(6.6)	(10.6)	(10.1)	(14.1)	(13.8)
Baseline medications, n (%)								
Beta blocker	538	547	769	735	920	935	1005	1050
	(33.2)	(32.3)	(46.8)	(47.4)	(54.6)	(56.3)	(64.8)	(66.0)
GLP-1RA	111	99	137	113	132	115	117	119
	(6.9)	(5.9)	(8.3)	(7.3)	(7.8)	(6.9)	(7.5)	(7.5)
SGLT-2i	137	136	117	116	110	111	72	74
	(8.5)	(8 0)	(7 1)	(7.5)	(6.5)	(6 7)	(4.6)	(4,7)

(1.0) (...) BMI, body mass index; CV, cardiovascular; eGFR, estimated glomerular filtration rate; GLP-1RA, glucagon-like peptide-1 receptor agonist; HbA1c, glycated haemoglobin; IQR, interquartile range; MI, myocardial infarction; SD, standard deviation; SGLT-2i, sodium-glucose co-transporter-2 inhibitor; UACR, urine albumin-to-creatinine ratio.

Peter Rossing, MD^{1,2}; Andreas L. Birkenfeld, MD³⁻⁵; Paola Fioretto, MD, PhD^{8,9}; Bertram Pitt, MD¹⁰; Katja Rohwedder, MD¹¹; Andrea Scalise, MD¹²; Charlie Scott, MSc¹³;

,		
•		

- Finerenone lowered the risk of CV and kidney outcomes irrespective of frailty status (**Figure 1**)

Figure 1. Efficacy outcomes for finerenone and placebo across the frailty subgroups

Outcomo	Finerenone	Placebo				<i>p</i> -value for	Absolute risk difference	<i>p</i> -value for
Outcome	n/N (IR per 100 PY)	n/N (IR per 100 PY)	TK (95% CI)			interaction	(95% CI)	interaction
CV composite outcome								
≤Q1	92/1619 (1.8)	86/1691 (1.6)	<u>н</u>		1.13 (0.84 to 1.52)		-0.6 (-2.1 to 0.9)	
>Q1 to ≤Q2	174/1643 (3.5)	193/1549 (4.2)	·		0.85 (0.69 to 1.05)	0.26	1.9 (–0.3 to 4.1)	0.45
>Q2 to ≤Q3	240/1685 (5.0)	272/1661 (5.9)		-	0.87 (0.73 to 1.03)	0.30	2.1 (-0.3 to 4.6)	
>Q3	317/1551 (7.9)	387/1591 (9.7)	⊢−−− •		0.84 (0.72 to 0.97)		3.9 (1.0 to 6.8)	
≥57% kidney composite o	utcome							
≤Q1	52/1619 (1.0)	75/1691 (1.4)	·		0.75 (0.52 to 1.08)		1.2 (–0.1 to 2.5)	
>Q1 to ≤Q2	100/1643 (2.1)	117/1549 (2.7)	·		0.76 (0.58 to 1.00)	0.00	1.5 (–0.3 to 3.2)	0.76
>Q2 to ≤Q3	89/1685 (1.9)	124/1661 (2.7)	ب		0.70 (0.53 to 0.93)	0.96	2.2 (0.5 to 3.8)	
>Q3	115/1551 (3.0)	149/1591 (3.8)	·		0.74 (0.58 to 0.95)		2.0 (0.0 to 3.9)	
			0.50 1.0	0 2	2.00			
			Favours finerenone	Favours placebo	•			

CI, confidence interval; CV, cardiovascular; HR, hazard ratio; IR, incidence rate; PY, patient-years; Q, quartile.

From baseline to month 48, finerenone was associated with a lower rate of eGFR decline compared with placebo for all frailty subgroups (**Table 2**) - The attenuation of total eGFR slope by finerenone compared with placebo was more pronounced with increasing severity of frailty

	≤Q1 (least frail)		>Q1 to ≤Q2		>Q2 to ≤Q3		>Q3 (most frail)			
ml/min/1.73 m² (95% CI)	Difference of LS-means (finerenone vs placebo)	<i>p</i> -value	Difference of LS-means (finerenone vs placebo)	p-value	Difference of LS-means (finerenone vs placebo)	<i>p</i> -value	Difference of LS-means (finerenone vs placebo)	<i>p</i> -value		
Acute eGFR slope from baseline to month 4	-5.55 (-7.13 to -3.96)	<0.0001	-5.62 (-7.34 to -3.89)	<0.0001	-6.41 (-8.04 to -4.78)	<0.0001	–2.85 (–4.48 to –1.23)	0.0006		
Chronic eGFR slope from month 4 to end of study visit	0.75 (0.46 to 1.05)	<0.0001	1.12 (0.76 to 1.48)	<0.0001	1.23 (0.90 to 1.56)	<0.0001	1.03 (0.67 to 1.39)	<0.0001		
Total slope from baseline to month 48	0.23 (–0.05 to 0.51)	0.1113	0.56 (0.23 to 0.89)	0.0010	0.59 (0.28 to 0.91)	0.0002	0.71 (0.37 to 1.04)	<0.0001		
CL confidence interval: eCER, estimated alomerular filtration rate: LS, least-squares: O, quartile										

CI, confidence interval, eGFR, estimated giomerular intration rate, LS, least-squares, Q, quarti

- The safety profile of finerenone relative to placebo was not modified by frailty status (**Figure 2**) the incidence rates of study drug-related SAEs were low across all subgroups

Figure 2. Incidence of treatment-emergent adverse events and hyperkalaemia for finerenone and placebo across the frailty subgroups

Q, quartile; TEAE, treatment-emergent adverse event.

Conclusions

- frailty status
- risk remained consistent between the treatment arms across the frailty subgroups
- Compared with placebo, finerenone slowed the rate of eGFR decline from baseline to month 48 for all frailty subgroups

• Overall, incidence of CV and kidney events increased with increasing frailty in both treatment arms (**Figure 1**)

- Absolute risk reduction of CV composite outcome with finerenone vs placebo was nominally higher in severely frail patients (p-value for interaction = 0.45)

Table 2. Change in eGFR across the study period for finerenone and placebo according to frailty index score

- Incidence of serious adverse events (SAEs) was slightly lower with finerenone vs placebo across all frailty subgroups; although incidence rates increased with increasing frailty,

- Incidence of hyperkalaemia was higher with finerenone vs placebo and increased with increasing frailty; serious hyperkalaemia was low across frailty subgroups and treatment arms

• Finerenone lowered the risk of CV and kidney outcomes in patients with CKD and T2D regardless of

Incidence rates of SAEs and hyperkalaemia increased with frailty index score; however, the relative

Acknowledgements: The FIDELIO-DKD and FIGARO-DKD studies and predefined pooled FIDELITY analysis were funded by Bayer AG. The authors and study sponsor are indebted to the study participants and their families, as well as the investigators and sites participating in the studies. Medical writing and editorial assistance were provided by Belinda Mills, PhD (Healthcare Consultancy Group), with funding from Bayer AG. Finally, our esteemed steering committee member, George Bakris, passed away in June 2024 and will be remembered for his passion for science and patient care. Disclosures: PR reports personal fees from Bayer during the conduct of the study; he has received research support and personal fees from AstraZeneca and Novo Nordisk, and personal fees from Abbott, Astellas, Boehringer Ingelheim, Eli Lilly and Company, Gilead, Mundipharma, Sanofi, and Vifor; all fees are given to Steno Diabetes Center Copenhagen. ALB reports personal fees from AstraZeneca, Bayer, Boehringer Ingelheim, and Novo Nordisk during the conduct of the study; all fees are given to the University Clinic, Tübingen. PF reports personal fees from AstraZeneca, Bayer, Boehringer Ingelheim, Eli Lilly and Company, and Novo Nordisk. JBM reports personal fees from Bayer, ClearNote Health, Eli Lilly and Company, MannKind, and Thermo Fisher, research support and personal fees from Novo Nordisk, and research support from JDRF. **SDA** declares grants and personal fees from Abbott Vascular and Vifor, and personal fees for consultancies, trial committee work and/or lectures from Actimed, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, BioVentrix, B·R·A·H·M·S, Cardiac Dimensions, Cardior, Cordio, CVRx, Edwards, Farraday, Impulse Dynamics, Janssen, Novartis, Occlutech, Pfizer, Respicardia, Servier, Vectorious, and V-Wave. He is named co-inventor of 2 patent applications regarding MR-proANP (DE 102007010834 & DE 102007022367), but he does not benefit personally from the related issued patents. BP reports consultant fees for AstraZeneca Bayer, Boehringer Ingelheim, BrainStorm Medical, Cereno Scientific, G3 Pharmaceuticals, KBP Biosciences, PhaseBio, Proton Intel, Sanofi/Lexicon, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and Vifor/Relypsa; he has stock options for BrainStorm Medical, Cereno Scientific, G3 Pharmaceuticals, KBP Biosciences, Proton Intel, Sarfez, scPharmaceuticals, SQ Innovation, Tricida, and Vifor/Relypsa; he also holds a patent for site-specific delivery of eplerenone to the myocardium (United States [US] patent #9931412) and a provisional patent for histone acetylation-modulating agents for the treatment and prevention of organ injury (provisional patent US 63/045,784). KR, AS, and CS are full-time employees of Bayer. GF reports lecture fees and/or that he is a committee member of trials and registries sponsored by Amgen, Bayer, Boehringer Ingelheim, Medtronic, Novartis, Servier, and Vifor Pharma. He is a Senior Consulting Editor for JACC: Heart Failure and has received research support from the European Union (EU). References: 1. Sciacchitano S, et al. J Clin Med 2024;13:721; 2. Strain WD, et al. Diabetes Ther 2021;12:1227–1247; 3. Vart P, et al. J Gerontol A Biol Sci Med Sci 2024;79; 4. Walker SR, et al. BMC Nephrology 2013;14:228; 5. Lavan AH, et al. Age Ageing 2017;46:600–607; 6. Roshanravan B, et al. Am J Kidney Dis 2012;60:912–921; 7. Mansur HN, et al. Health Qual Life Outcomes 2014;12:27; 8. Hannan M, et al. Am J Kidney Dis 2024;83:208–215; 9. Agarwal R, et al. Eur Heart J 2022;43:474–484; 10. Bakris GL, et al. N Engl J Med 2020;383:2219–2229; 11. Pitt B, et al. N Engl J Med 2021;385:2252–2263. Short Oral Discussion SO 080-892 presented at the European Association for the Study of Diabetes 2024 (EASD 24); 9–13 September 2024; Madrid, Spain