Utilization of nonsteroidal MRA finerenone: Evaluation of real-world data in the United States, 2021 – 2023

Authors: Singh, Ajay¹, Singh, Rakesh², Du, Yuxian², Kong, Sheldon², Winer-Jones, Jessamine³, Williamson, Todd², Kallenbach, Lee³, Authors: Singh, Ajay¹, Singh, Rakesh², Du, Yuxian², Kong, Sheldon², Winer-Jones, Jessamine³, Williamson, Todd², Kallenbach, Lee³, Authors: Singh, Ajay¹, Singh, Rakesh², Du, Yuxian², Kong, Sheldon², Viner-Jones, Jessamine³, Williamson, Todd², Kallenbach, Lee³, Singh, Ajay¹, Singh, Rakesh², Du, Yuxian², Kong, Sheldon², Viner-Jones, Jessamine³, Williamson, Todd², Kallenbach, Lee³, Sheldon², Singh, Ajay¹, Singh, Rakesh², Du, Yuxian², Kong, Sheldon², Kallenbach, Lee³, Sheldon², Sheldon³, Sheldon², Sheldon², Sheldon³, Sheldon², Sheldon², Sheldon³, Affiliations: 1) Harvard Medical School, Cambridge, MA, USA; 2) Bayer US, LLC, Whippany, NJ, USA; 3) Veradigm, Chicago, IL, USA

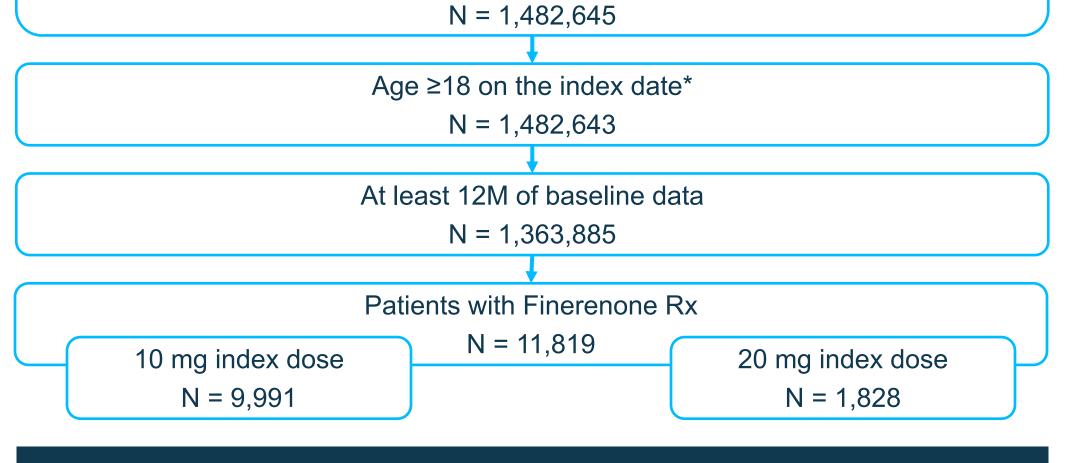
Introduction

- The dual burden of chronic kidney disease (CKD) and type 2 diabetes (T2D) is associated with severe outcomes, including increased risk of end-stage kidney disease and substantially higher cardiovascular and non-cardiovascular mortality compared to a diagnosis of CKD or T2D alone.^{1,2}
- The nonsteroidal MRA finerenone is an approved therapy to reduce the risk of sustained estimated glomerular filtration rate decline, end stage renal disease, cardiovascular death, non-fatal myocardial infarction, and hospitalization due to heart failure in adults with T2D and CKD.³⁻⁵

Objective

• To describe utilization of finerenone in patients two years after its approval.

Methods


Study Design

• Cross-sectional study using data from the Veradigm Network EHR spanning August 1, 2016–September 30, 2023

Study Cohort

• Patients with CKD and T2D who were prescribed finerenone (Figure 1)

 \geq 1 diagnosis of T2D and \geq 1 diagnosis of CKD (or \geq 1 diagnosis indicating both T2D and CKD) during the study time period (8/1/2016–9/30/2023) AND a prescription or visit during patient selection (8/1/2021–9/30/2023)

Figure 1: Patient Selection

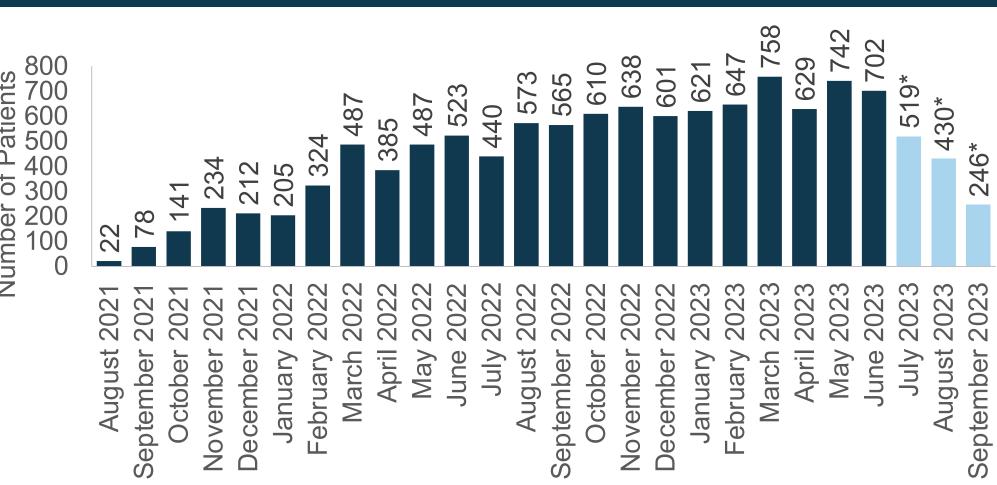
*The index date is the date of the patient's first prescription for finerenone in the EHR. CKD, chronic kidney disease; Rx, prescription; T2D, type 2 diabetes

Study Variables

- Demographic characteristics
- Clinical characteristics: comorbidities, baseline medication usage, baseline estimated glomerular filtration rate (GFR) and urine albumin-creatinine ratio (UACR) measured during the year preceding the index date.
- Calculated KDIGO risk category for patients with both eGFR and UACR available
- Characteristics of finerenone prescribing: Initial dose, prescriber by patient geographic location, month of initiation over time

Table 1: Patient Demographics

	Patients with		
	Finerenone Rx		
	N = 11,819		
	N/Mean	%/SD	
Age, (Mean, SD)	68.3	11.2	
Age Group, (N,%)		• • • • • •	
18-44	396	3.4%	
45-54	927	7.8%	
55-64	2,534	21.4%	
65-74	4,305	36.4%	
75+	3,657	30.9%	
Sex (N,%)			
Male	6,638	56.2%	
Female	5,177	43.8%	
Unknown/Not Reported	4	0.0%	
Race (N,%)			
White	5,324	45.0%	
Black	1,772	15.0%	
Asian	1,407	11.9%	
Other	1,822	15.4%	
Unknown/Not Reported	1,494	12.6%	
Ethnicity (N,%)			
Hispanic	861	7.3%	
Non-Hispanic	8,842	74.8%	
Unknown/Not Reported	2,116	17.9%	
Geographic Region (N,%)			
Northeast	1,228	10.4%	
Midwest	1,304	11.0%	
South	5,178	43.8%	
West	3,688	31.2%	
Other/Unknown	421	3.6%	

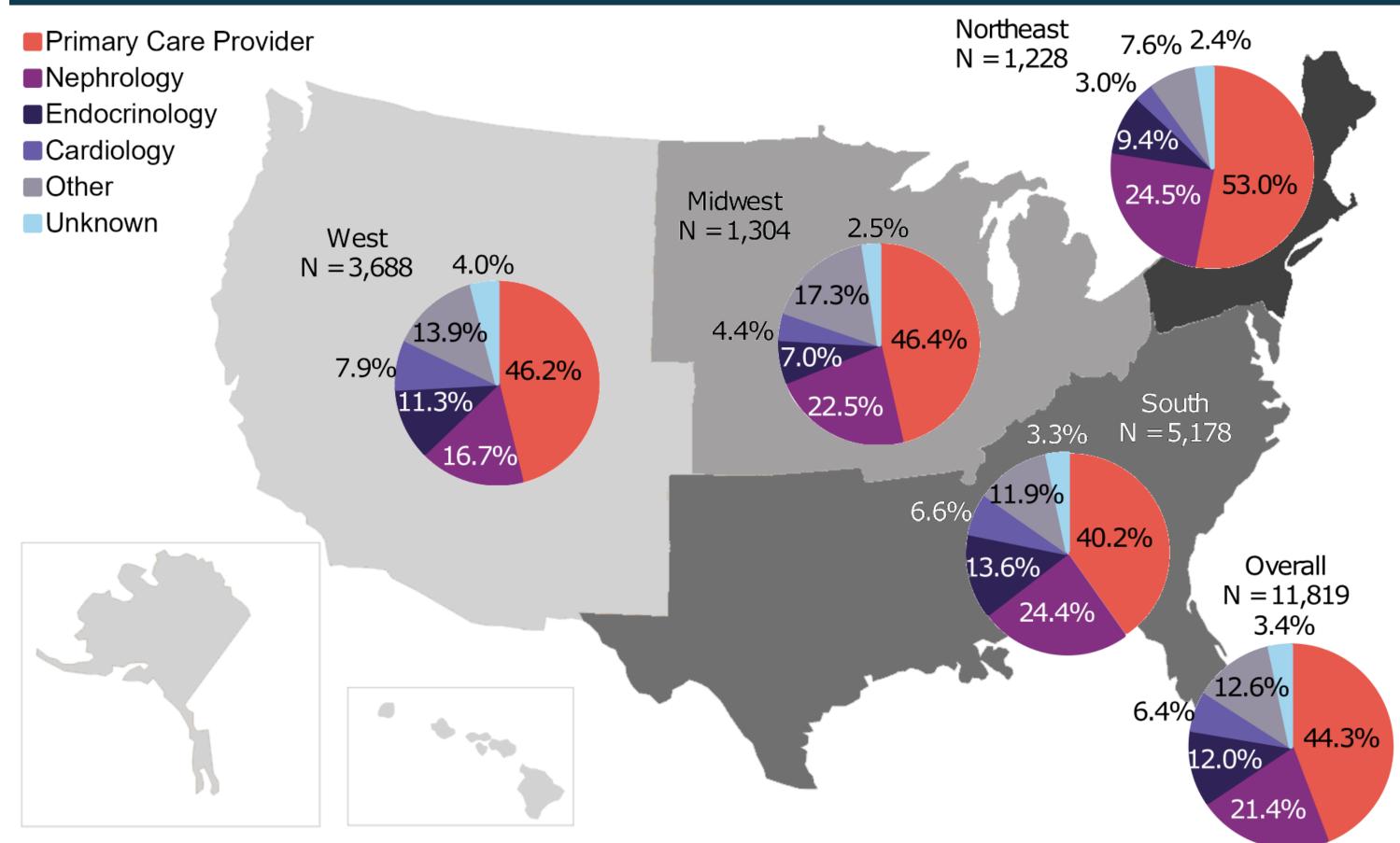

Table 2: Distribution of Risk Categories by Finerenone Initiation Dose

KDIGO Risk Category	Finerenone All Finerenone 10 mg		Finerenone 20 mg	
	N = 3,136	N = 2,640	N = 496	
Low risk, N (%)	87 (2.8%)	60 (2.3%)	27 (5.4%)	
Moderate risk, N (%)	690 (22.0%)	513 (19.4%)	177 (35.7%)	
High risk, N (%)	983 (31.3%)	811 (30.7%)	172 (34.7%)	
Very high risk, N (%)	1,376 (43.9%)	1,256 (47.6%)	120 (24.2%)	

Table 3: Distribution of KDIGO Risk Groups Among Finerenone Initiators

		All Finerenone Patients			
Ranges		Albuminuria Categories (mg/g)			
		<30	30-300	>300	Total (%)
eGFR Categories (ml/min/1.73m ²)	≥90	23 (0.7%)	181 (5.8%)	165 (5.3%)	369 (11.8%)
	60-89	64 (2.0%)	275 (8.8%)	311 (9.9%)	650 (20.7%)
	45-59	234 (7.5%)	296 (9.4%)	290 (9.2%)	820 (26.1%)
	30-44	211 (6.7%)	335 (10.7%)	413 (13.2%)	959 (30.6%)
Ca I/m	15-29	48 (1.5%)	97 (3.1%)	185 (5.9%)	330 (10.5%)
(m	<15	0 (0.0%)	2 (0.1%)	6 (0.2%)	8 (0.3%)
Total	(%)	580 (18.5%)	1,186 (37.8%)	1,370 (43.7%)	3,136 (100.0%)

Figure 2: Timing of Finerenone Initiation


* Light blue bars indicate months with incomplete data due to data lag in the contributing EHRs.

Results

• We identified 11,819 adults diagnosed with CKD and T2D with a finerenone prescription, of which 84.5% indexed on a 10mg dose (Fig. 1). • Patients with a finerenone prescription were 68.3 (SD: 11.2) years old, 56.2% male, 45.0% White, and 74.8% non-Hispanic (Table 1). • The most common cardiovascular comorbidities were hypertension (89.1%), peripheral vascular disease (24.6%), and coronary artery disease (22.6%), heart failure (17.2%), and atrial fibrillation (10.1%).

• Overall, 83.4% of patients had an antihypertensive prescription and 82.9% had an antidiabetic prescription in the 12 months prior to starting finerenone. ARBs (40.2%), beta-blockers (39.0%), and calcium channel blockers (38.7) were the most common antidiabetics while SGLT-2 inhibitors (45.2%), biguanides (34.1%), and GLP-1 agonists (32.4%) were the most common antihypertensives • Among the 3,136 finerenone users with an eGFR and UACR result, 75.2% had a high or very high risk KDIGO cardiovascular risk score (Table 2). Among those starting on a 20 mg dose, 24.2% were in the very high risk category indicating an eGFR <60 at initiation.

Figure 3: Finerenone Prescriber Type by Patient Geographic Region.

Results, Cont.

- Prescribing of finerenone increased steadily between approval in August 2021 and June 2023 (Figure 2).
- The documenting prescriber was a primary care physician for 44.3% of patients, a nephrologist for 21.4% of patients, an endocrinologist for 12.0% of patients, and a cardiologist for 6.4% of patients (Figure 3).
- Primary care physicians made up a greater share of documenting providers in the Northeast (53.0%), whereas the share of endocrinologists was greatest in the South (13.6%).

Conclusions

- used by a fraction of patients who would likely benefit from treatment.
- Among those with available lab results, 43.9% of finerenone initiators were in the very high risk KDIGO category, 31.3% in the high risk category, 22.0% in the moderate risk category, and 2.8% in the low risk category
- Among patients prescribed finerenone, there is diverse provider willingness to prescribe this new advanced therapy.
- Future work should compare CKD in T2D patients with vs without finerenone as well as associated outcomes.

References

- 1. Afkarian M, et al. J Am Soc Nephrol. 2013;24(2):302-308
- 2. Keane WF, et al. *Kidney Int*. 2003;63(4):1499-1507.
- 3. Filippatos G, et al. *Circulation*. 2021;143(6):540-552.
- 4. Pitt B, et al. *N Engl J Med*. 2021;385(24):2252-2263.
- 5. Filippatos G, et al. Circulation. 2022;145(6):437-447.

Disclosures

Ajay Singh is a consultant for Bayer US, LLC. Rakesh Sing, Yuxian Du, Seldon Kong, Ryan Farej, Zihe (Emma) Zheng, and Todd Williamson are employees of Bayer US, LLC. Youssef Farag was a Bayer employee at the time when this work is completed. Lee Kallenbach, Kevin Lavelle, Jessamine Winer-Jones, Stephanie Wall and Kimberly McDermott are employees of Veradigm which received funding from Bayer US, LLC to conduct this study.

• In a large real-world clinical dataset, adoption of nsMRA finerenone has been growing steadily since initial approval, but it still is only

This study was funded by Bayer US, LLC.