Predictors of Persistent Medication Use in Diabetic Kidney Disease (DKD)

Susanne B. Nicholas, MD, MPH, PhD; Keith C. Norris, Kenn B. Daratha, Radica Z. Alicic, Cami R. Jones, Lindsey M. Kornowske, Katherine R. Tuttle, Samuel T. Fatoba, Sheldon X. Kong, Rakesh Singh, and the CURE CKD Investigators

Abstract: TH-PO255

FINANCIAL DISCLOSURE

 Presenter: Susanne B. Nicholas, MD, MPH, PhD
 NIH research grants R01MD014712, RF00250-2022-0038, U2CDK129496 and P50MD017366, and CDC project number 75D301-21-P-12254; receives research support from Bayer AG for the submitted work, Goldfinch Bio, Travere and Terasaki Institute of Biomedical Innovation, and personal fees and other support from AstraZeneca, Bayer AG, Gilead, NovoNordisk and Boehringer Ingelheim/Lilly

Co-authors:

Keith C. Norris: NIH research grants UL1TR001881, P30AG021684, U2CDK129496 and P50MD017366

Kenn B. Daratha: NIH research grant R01MD014712 and CDC project number 75D301-21-P-12254; and reports other support from Bayer AG for the submitted work, and Goldfinch Bio and Travere outside the submitted work.

Radica Z. Alicic: CDC project number 75D301-21-P-12254, grants from Bayer AG for the submitted work, and Goldfinch Bio, and personal fees from Boehringer Ingelheim.

Cami R. Jones: NIH research grant R01MD014712 and CDC project number 75D301-21-P-12254; and reports other support from Bayer AG for the submitted work, and Goldfinch Bio and Travere outside the submitted work.

Lindsey M. Kornowske: CDC project number 75D301-21-P-12254; and reports other support from Bayer AG for the submitted work, and Travere outside the submitted work.

Katherine R. Tuttle: NIH research grants R01MD014712, U2CDK114886, UL1TR002319, U54DK083912, U01DK100846, OT2HL161847, UM1AI109568 and CDC project number 75D301-21-P-12254; and reports other support from Eli Lilly; personal fees and other support from Boehringer Ingelheim; Novo Nordisk, AstraZeneca; grants, personal fees and other support from Bayer AG; Goldfinch Bio; other support from Gilead; and grants from Travere outside the submitted work Samuel T. Fatoba, Sheldon X. Kong, Rakesh Singh: Bayer LLC employees

- COMMERCIAL SUPPORT: Bayer, AG.
- SUBMITTED:SUBCATEGORY: Diabetic Kidney Disease: Clinical - I [PO0602-1]
- **CATEGORY:** CKD (Non-Dialysis)

BACKGROUND/OBJECTIVE

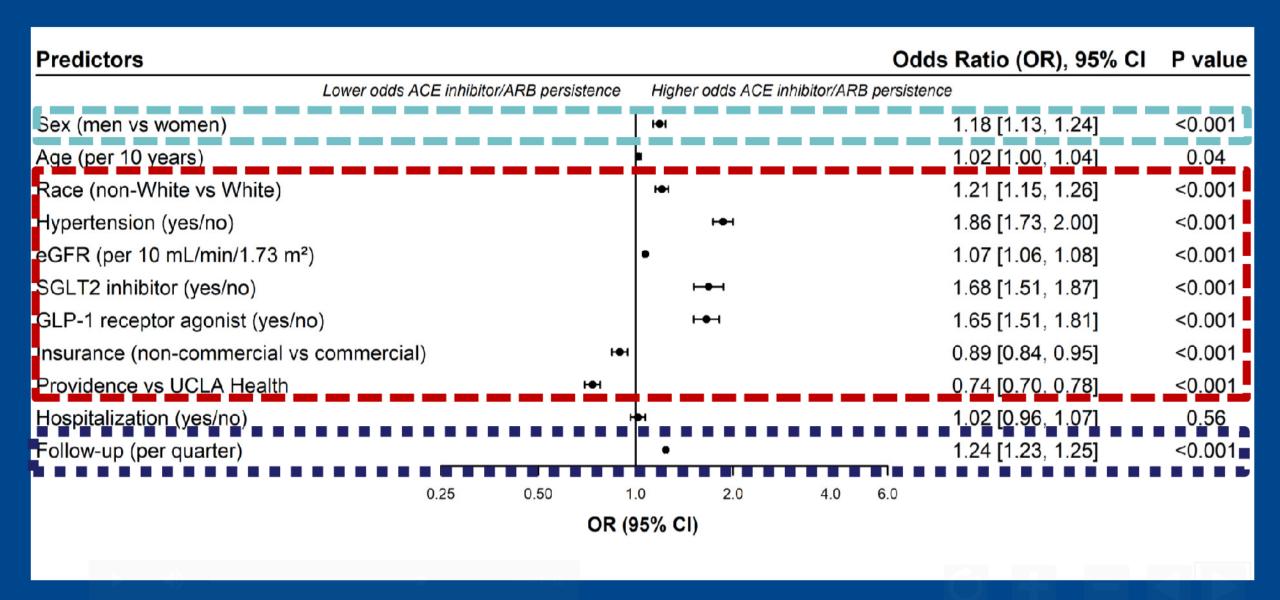
- Chronic kidney disease (CKD) affects 37 million individuals in the United States, and 850 million people worldwide
- By 2045, 784 million individuals worldwide will be affected by diabetes
- >40% of patients with CKD have diabetic kidney disease (DKD)
- KDIGO and the ADA recommend the use of guideline directed medical therapy (GDMT; ACE inhibitors/ARB, SGLT2 inhibitors, GLP 1 receptor agonists) to reduce the risk of kidney and cardiovascular disease in these patients
- The current study aimed to identify predictors of persistent GDMT use, according to prescribing rates for patients with diabetes and CKD

METHODS AND MATERIALS

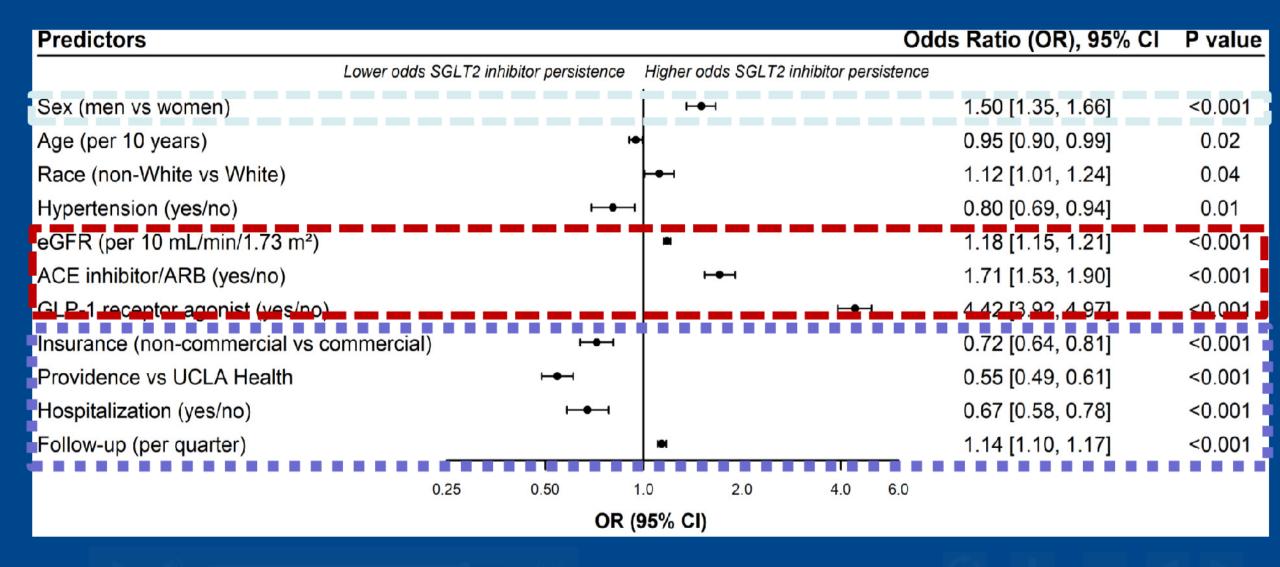
Study design	Retrospective study of real world data
Population	CURE-CKD Registry of >3.9 million adults and children with and/or at-risk for CKD in Western US, 2006-2020 Adults ≥18 years with diabetes, CKD, and eGFR >15 mL/min/1.73 m², 2015-2020
Data	Laboratory, demographics, prescription and administrative diagnostic data At baseline period: from entry through 365 days Followed up: until the last medication management associated encounter in 2019-2020
Data analysis	Multivariable, binary, logistic regression to identify predictors of persistent GDMTs Sensitivity analysis for subset of patients with UACR/UPCR data at baseline
Outcome	Persistence of prescribing GDMTs for ≥90 <i>cumulative</i> days

CHARACTERISTICS OF PATIENTS WITH DIABETES AND CKD, N=39,158

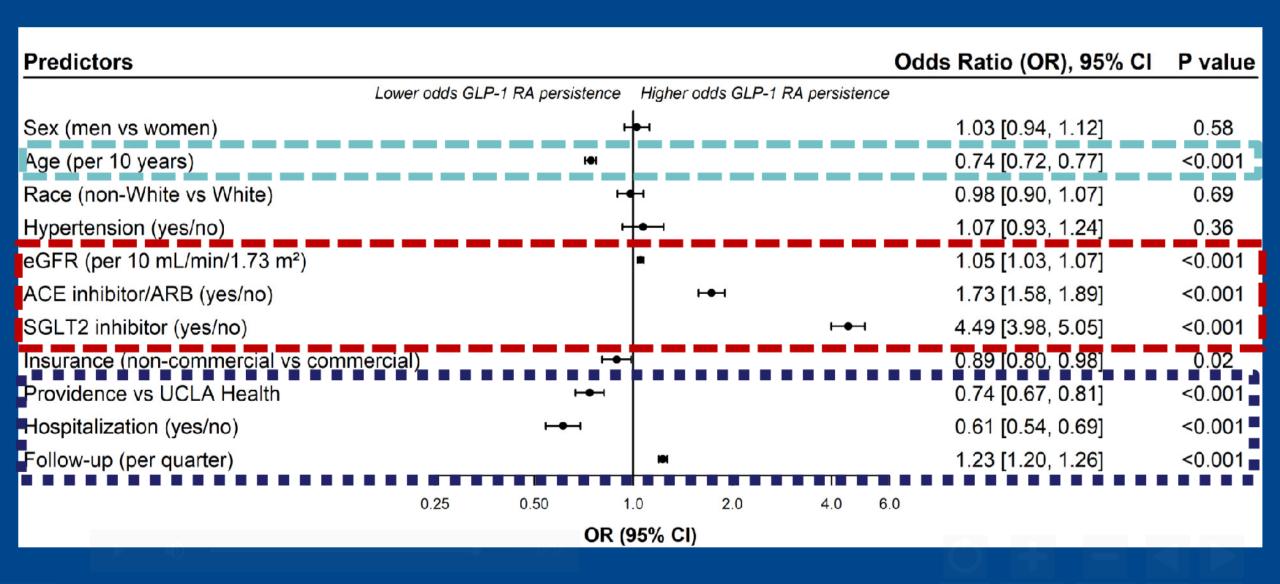
Demographics at entry				
Sex, n (%)				
Men	19,743 (50.4)			
Women	19,415 (49.6)			
Race and ethnicity, n (%)				
American Indian or Alaska Native	352 (0.9)			
Asian	3,210 (8.2)			
Black	2,266 (5.8)			
Hispanic or Latino(a)	1,596 (4.1)			
Native Hawaiian or Pacific Islander	484 (1.2)			
White	25,142 (64.2)			
Other ^a	4,546 (11.6)			
Not Reported	1,562 (4.0)			
Age, y, mean, SD	70, 14			
Primary health insurance, n (%)				
Medicare	22,169 (56.6)			
Medicaid	2,455 (6.3)			
Commercial	9,313 (23.8)			
Uninsured	4,041 (10.3)			
Unknown	1,180 (3.0)			


Clinical characteristics at baseline			
Follow, quarters, median (IQR)	6.5 (3.8-7.7)		
Hypertension, n (%)	34,000 (86.8)		
eGFR, mL/min/1.73 m ²			
n (%)	39,158 (100.0)		
mean, SD	57.5, 23.0		
SBP, mm Hg			
n (%)	36,994 (94.5)		
mean, SD	133, 17		
HbA1c, %			
n (%)	25,798 (65.9)		
median (IQR)	6.9 (6.3-8.0)		
UACR, mg/g			
n (%)	17,783 (45.4)		
median (IQR)	57.5 (31.7-158.2)		
UPCR, g/g			
n (%)	2,025 (5.2)		
median (IQR)	0.5 (0.2-1.7)		

PRESCRIBED MEDICATIONS


Medications at baseline n (%)			
ACE inhibitor/ARB	27,690 (70.7)		
SGLT2 inhibitor	2,228 (5.7)		
GLP-1 receptor agonist	2,663 (6.8)		
MRA	3,870 (9.8)		
NSAID	14,773 (37.7)		
PPI	15,991 (40.8)		

Guideline directed medical therapy persistence n (%)		
ACE inhibitor/ARB	15,806 (40.4)	
SGLT2 inhibitor	1,831 (4.7)	
GLP-1 receptor agonist	2,477 (6.3)	


PREDICTORS OF PERSISTENT ACE INHIBITOR/ARBS IN PATIENTS WITH DIABETES AND CKD

PREDICTORS OF PERSISTENT SGLT2 INHIBITORS IN PATIENTS WITH DIABETES AND CKD

PREDICTORS OF PERSISTENT GLP-1 RECEPTOR AGONISTS IN PATIENTS WITH DIABETES AND CKD

SENSITIVITY ANALYSIS

- Severely elevated albuminuria (UACR >300 mg/g) or proteinuria (UPCR >0.5 g/g) predicted persistent use of GDMTs:
 - ACE inhibitors/ARBs prescriptions (OR=1.29, 95%CI=1.19-1.40)p<0.001,
 - -or GLP 1 receptor agonists (OR=1.18, 95% CI=1.04-1.34) p=0.01
 - with overall model stability (data not shown)

CONCLUSION

- Prescribing GDMT in patients with diabetes and CKD was suboptimal at baseline and waned quickly
- Lack of commercial health insurance and the health system predicted under-prescribing and lower persistent use of GDMT
- The study suggests: adequate insurance coverage and equitable access to care are important targets to optimize persistent use of GDMTs in patients with diabetes and CKD

REFERENCES

- 2020 KDIGO Kidney Int. 2020;98:S1-S115
- 2022 KDIGO Kidney Int. 2022
- Draznin B, et al. *Diab Care* 2022;45:S125-S43
- Tuttle KR, et al. JAMA Netw Open. 2019;2(12)
- Norris KC, et al. BMC Nephrol. 2019;20(1):416